Home People Publications

Publications of the EPL Neural Coding Group

Selected papers and recent abstracts are organized by research area and available as Adobe PDF files.

Research Areas:

bulletNeural mechanisms of binaural and spatial hearing
bulletPhysiological studies of cochlear implants
bulletNeural coding of pitch and music
bulletFunctional organization of the inferior colliculus
bulletPerception and neural coding of temporal envelope
bulletNeural representation of speech
bulletComputational models of auditory neurons
bulletPhysiological basis of masking and frequency selectivity

Neural mechanisms of binaural and spatial hearing

Journal Publications

  1. Day ML, Delgutte B.  Neural population encoding and decoding of sound source location across sound level in the rabbit inferior colliculus. J. Neurophysiol. 2015, 112

  2. Wang L, Devore S, Delgutte B, Colburn HS.  Dual sensitivity of inferior colliculus neurons to ITD in the envelopes of high-frequency sounds: experimental and modeling study. J Neurophysiol. 2014; 111:164-81.  PDF

  3. Day ML, Delgutte B.  Decoding sound source location and separation using neural population activity patterns. J Neurosci. 2013; 33:15837-47.  PDF

  4. Day ML, Koka K, Delgutte B.  Neural encoding of sound source location in the presence of a concurrent, spatially-separated source. J. Neurophysiol. 2012; 108:2612-2628.  PDF

  5. Devore S, Delgutte B.  Effects of reverberation on the directional sensitivity of auditory neurons across the tonotopic axis: Influences of ITD and ILD. J. Neurosci.2010;  30:7826 7837.  PDF

  6. Devore S, Ihlefeld A, Hancock KE, Shinn-Cunningham B,  Delgutte B.  Accurate sound localization in reverberant environments is mediated by robust encoding of spatial cues in the auditory midbrain.  Neuron 2009; 62: 123-134.  PDF  Commentary by Terry Takahashi

  7. Dreyer A, Delgutte B.  Phase locking of auditory-nerve fibers to the envelopes of high-frequency sounds: Implications for sound localization.  J. Neurophysiol. 2006; 96:2327-2341.  PDF

  8. Lane CC, Delgutte B.   Neural correlates and mechanisms of spatial release from masking: Single-unit and population responses in the inferior colliculus.  J Neurophysiol. 2005; 94: 1180-1198.  PDF

  9. Hancock KE, Delgutte B.  A physiologically-based model of interaural time difference discrimination.  J Neurosci. 2004; 24: 7110-7117.  PDF

  10. Litovsky RY, Delgutte B.  Neural correlates of the precedence effect in the inferior colliculus:  Effect of localization cues.  J. Neurophysiol. 2002; 87:976-994.  PDF  Zip Archive of Matlab Data

  11. Delgutte B, Joris PX, Litovsky RY, Yin TCT.  Receptive fields and binaural interactions for virtual space stimuli in the cat inferior colliculus.  J. Neurophysiol. 1999; 81:2833-2851.  PDF  Zip Archive of Matlab Data

 

Conference Proceedings

 

  1. Day, ML, Delgutte, B. Neural correlates of the perception of sound source separation. Adv Exp Med Biol. 2013; 787:255-62.  PDF

  2. Devore S, Schwartz A, Delgutte B.  Effect of reverberation on directional sensitivity of auditory neurons: Central and peripheral factors.     In The Neurophysiological Bases of Auditory Perception, edited by E.A. Lopez-Poveda, A.R. Palmer and R. Meddis, Springer: New York, 2010: 273-282.   PDF

  3. Devore S, Ihlefeld B,  Shinn-Cunningham BG, Delgutte B.  Neural and behavioral sensitivities to azimuth degrade with distance in reverberant environments.  In Hearing From Basic Research to Applications, Kollmeier B, Klump G, Hohmann V, Langemann U, Mauermann M, Uppenkamp S, Verhey J (eds), Springer: New York, 2007: 505-516.  PDF

  4. Hancock KE.  A physiologically-based rate code for interaural time differences (ITD) predicts bandwidth-dependent lateralization.  In Hearing From Basic Research to Applications, Kollmeier B, Klump G, Hohmann V, Langemann U, Mauermann M, Uppenkamp S, Verhey J (eds), Springer: New York, 2007: 389-398.  PDF

  5. Lane CC, Kopco N, Delgutte B, Shinn-Cunningham BG, Colburn HS.   A cat's cocktail party: Psychophysical, neurophysiological and computational studies of spatial release from masking.  In: Auditory signal processing: Physiology, psychoacoustics, and models, Pressnitzer D, de Cheveigne A, McAdams S, Collet L (eds).  Springer, 2005: 405-413.  PDF

  6. Litovsky RY, Lane CC, Atencio C, Delgutte B.  Physiological measures of the precedence effect and spatial release from masking in the cat inferior colliculus. In Physiological and Psychophysical Bases of Auditory Function, DJ Breebaart, AJM Houtsma, A Kohlrausch, VF Prijs, and R Schoonhoven (eds).  Maastricht: Shaker, 2001: 221-228 PDF

 

Abstract

 

  1. Hancock KE, Delgutte B.  Neural correlates of the Huggins dichotic pitch.  Abstr. Assoc. Res. Otolaryngol. 25:153, 2002.  PDF

Theses

  1. Schwarz AH.  Effect of reverberation on the directional sensitivity of auditory neurons: Peripheral factors.  MS Thesis, Department of Electrical Engineering and Computer Science, MIT, 2010.  PDF
  2. Devore S.  Neural correlates and mechanisms of sound localization in everyday reverberant settings.  Doctoral Dissertation, Harvard-MIT Division of Health Sciences and Technology, 2009.  PDF
  3. Dreyer A. Predicting lateralization at high frequencies from auditory-nerve spike timing.  MEng Thesis, Department of Electrical Engineering and Computer Science, MIT, 2005.  PDF
  4. Lane CC.  Signal detection in the auditory midbrain: Neural correlates and mechanisms of spatial release from masking.  Doctoral Dissertation, Harvard-MIT Division of Health Sciences and Technology, 2003.  PDF

Top of page

Physiological studies of cochlear implants

Journal Publications

  1. Chung Y, Hancock KE, Delgutte B. Neural coding of interaural time differences with bilateral cochlear implants in unanesthetized rabbits. J Neurosci. 2016 May 18;36(20):5520-31. PDF

  2. Chung Y, Delgutte B, Colburn HS.  Modeling binaural responses in the auditory brainstem to electric stimulation of the auditory nerve.  J. Assoc. Res. Otolaryng. 2015; 16:135-58. PDF

  3. Chung Y, Hancock, KE, Nam SI, Delgutte B.  Coding of electric pulse trains presented through cochlear implants in the auditory midbrain of awake rabbit: Comparison with anesthetized preparations.  J Neurosci. 2014; 34:218-31. PDF

  4. Hancock, KE, Chung Y, Delgutte B. Congenital and prolonged adult-onset deafness cause distinct degradations in neural ITD coding with bilateral cochlear implants. J Assoc Res Otolaryngol. 2013; 14:393-411. PDF

  5. Hancock KE, Chung Y, Delgutte B. Neural ITD tuning with bilateral cochlear implants: Effect of binaurally-coherent jitter.  J Neurophysiol. 2012; 108: 714-728.  PDF Editorial focus by B. Laback

  6. Hancock KE, Noel V, Ryugo DK, Delgutte B.  Neural coding of interaural time differences with bilateral cochlear implants: effects of congenital deafness.  J Neurosci 2010; 30:14068-79  PDF  Supplementary Material

  7. Smith ZM, Delgutte B.  Sensitivity of inferior colliculus neurons to interaural time differences in the envelope versus the fine structure with bilateral cochlear implants.  J Neurophysiol. 2008; 99:2390-2407.  PDF

  8. Smith ZM, Delgutte B.  Sensitivity to interaural time differences in the inferior colliculus with bilateral cochlear implants.  J. Neurosci. 2007; 27:6740-6750.  PDF

  9. Smith ZM, Delgutte B.  Using evoked potentials to match interaural electrode pairs with bilateral cochlear implants.  J. Assos. Res. Otolaryngol. 2007; 8:134-151.  PDF

  10. Litvak LM, Smith ZM, Delgutte B, Eddington DK.  Desynchronization of electrically-evoked auditory-nerve activity by high-frequency pulse trains of long duration.  J. Acoust. Soc. Am. 2003; 114:2066-2078.  PDF

  11. Litvak LM, Delgutte B, Eddington DK.  Improved temporal coding of sinusoids in electric stimulation of the auditory nerve using desynchronizing pulse trains.  J. Acoust. Soc. Am. 2003; 114:2079-2098.  PDF

  12. Litvak LM, Delgutte B, Eddington DK.  Improved neural representation of vowels in electric stimulation using desynchronizing pulse trains.  J. Acoust. Soc. Am. 2003; 114:2099-2111.  PDF

  13. Litvak LM, Delgutte, B, Eddington DK.  Auditory nerve fiber responses to electric stimulation: Modulated and unmodulated pulse trains.  J. Acoust. Soc. Am. 2001; 110:368-379.  PDF

  14. Dynes SBC, Delgutte B.  Phase locking of auditory-nerve discharges to sinusoidal electric stimulation of the cochlea.  Hearing Res. 1992; 58: 79-90.  PDF

Conference Proceedings

  1. Chung Y, Hancock KE, Nam S-I,  Delgutte B.  Better temporal neural coding with cochlear implants in awake animals. Adv Exp Med Biol. 2013;787:353-61. PDF

  2. Goupell M, Hancock K, Majdak M, Laback B, Delgutte B.  Binaurally-coherent jitter improves neural and perceptual ITD sensitivity in normal and electric hearing.     In The Neurophysiological Bases of Auditory Perception, edited by E.A. Lopez-Poveda, A.R. Palmer and R. Meddis, Springer: New York, 2010: 303-313.  PDF

  3. Hancock KE, Noel V, Delgutte B.  Neural coding of ITD with bilateral cochlear implants: Effects of auditory experience.  In Binaural Processing and Spatial Hearing, edited by J.M. Buchholz, T. Dau, J.C. Dalsgaard and T. Poulsen, Danavox Jubilee Foundation: Ballerup, Denmark, 2010: 1-14.  PDF

Thesis

  1. Smith ZM.  Binaural interactions in the auditory midbrain with bilateral electric stimulation of the cochlea.  Doctoral Dissertation, Harvard-MIT Division of Health Sciences and Technology, 2006.  PDF

Top of page

Neural correlates of pitch and music

Journal Publications

  1. Wang GI, Delgutte B.  Sensitivity of cochlear nucleus neurons to spatio-temporal changes in auditory nerve activity. J. Neurophysiol. 2012; 108: 31723195  PDF

  2. Cedolin L, Delgutte B.  Spatiotemporal representation of the pitch of harmonic complex tones in the auditory nerve. J. Neurosci. 2010; 30: 12712-24. PDF

  3. Larsen E, Cedolin L, Delgutte B.  Pitch representations in the auditory nerve: Concurrent complex tones.  J. Neurophysiol. 2008; 100: 1301-1319.  PDF

  4. Cedolin L, Delgutte B.  Pitch of complex tones: Rate-place and interspike-interval representations in the auditory nerve. J. Neurophysiol. 2005; 94: 347362.  PDF

  5. McKinney MF, Delgutte B.  A possible neurophysiological basis of the octave enlargement effect.  J. Acoust. Soc. Am. 1999; 106:2619-2692.  PDF  Zip Archive of Matlab Data

  6. Cariani PA, Delgutte B.  Neural correlates of the pitch of complex tones. I. Pitch and pitch salience. J. Neurophysiol. 1996; 76:1698-1716.  PDF

  7. Cariani PA, Delgutte B.  Neural correlates of the pitch of complex tones. II. Pitch shift, pitch ambiguity, phase invariance, pitch circularity, rate pitch and dominance region for pitch.  J. Neurophysiol. 1996; 76:1717-1734.  PDF

Conference Proceedings

  1. Cedolin L, Delgutte B.  Spatio-temporal representation of the pitch of complex tones in the auditory nerve. In Hearing From Basic Research to Applications, Kollmeier B, Klump G, Hohmann V, Langemann U, Mauermann M, Uppenkamp S, Verhey J (eds). Springer: New York, 2007: 61-70.  PDF

  2. Cedolin L, Delgutte B.  Representations of the pitch of complex tones in the auditory nerve.  In: Auditory signal processing: Physiology, Psychoacoustics, and Models, Pressnitzer D, de Cheveigne A, McAdams S, Collet L (eds).  Springer 2005: 107-116.   PDF

  3. McKinney MF, Tramo MJ, Delgutte B. Neural correlates of the dissonance of musical intervals in the inferior colliculus.  In Physiological and Psychophysical Bases of Auditory Function, DJ Breebaart, AJM Houtsma, A Kohlrausch, VF Prijs, and R Schoonhoven (eds).  Maastricht: Shaker, 2001: 83-89.  PDF

Theses

  1. Wang GI.  Coincidence detection in the cochlear nucleus: Implication for the coding of pitch.  Doctoral Dissertation, MIT Dept. of Electrical Engineering and Computer Science, 2011.  PDF

  2. Cedolin L.  Neural representations of pitch: Role of peripheral frequency selectivity.  Doctoral Dissertation, Harvard-MIT Division of Health Sciences and Technology, 2006.  PDF

  3. McKinney MF.  Neural correlates of pitch and roughness: Towards the neural code for melody and harmony perception.  Doctoral Dissertation, Harvard-MIT Division of Health Sciences and Technology, 2001.  PDF

Top of page

Masking, frequency selectivity and the dynamic range problem

Journal Publications and Review

  1. Wen B, Wang GI, Dean I, Delgutte B.  Time course of dynamic range adaptation in the auditory nerve.  J. Neurophysiol. 2012; 108:69-82.  PDF

  2. Wen B, Wang GI, Dean I, Delgutte B.  Dynamic range adaptation to sound level statistics in the auditory nerve,  J. Neurosci. 2009; 29: 1379713808.  PDF

  3. Delgutte B.  Physiological models for basic auditory percepts.  In Auditory Computation, edited by HH Hawkins, TA McMullen, AN Popper, and RR Fay.  New York: Springer, 1996: 157-220.  PDF

  4. Delgutte B.  Physiological mechanisms of psychophysical masking:  Observations from auditory-nerve fibers.  J. Acoust. Soc. Am. 1990; 87:791-809.  PDF

  5. Delgutte B.  Two-tone rate suppression in auditory-nerve fibers: Dependence on suppressor frequency and level.  Hearing Res. 1990; 49: 225-246.  PDF

Conference Proceedings

  1. Delgutte B.  Physiological mechanisms of masking.  In: H Duifhuis, W Horst, and HP Wit, eds.  Basic Issues in Hearing. London: Academic, 1988: 204-214.  PDF
  2. Delgutte B.  Peripheral auditory processing of speech information: Implications from a physiological study of intensity discrimination.  In: M.E.H. Schouten, ed.  The Psychophysics of Speech Perception.  Dordrecht: Nijhof, 1987: 333-353.  PDF

Abstract

  1. Cedolin L, Delgutte B.  Frequency selectivity of auditory-nerve fibers studied with band-reject noise.  Abstr. Assoc. Res. Otolaryngol. 25:330, 2002.  PDF

Top of page

Perception and neural coding of temporal envelope and fine structure

Journal Publication

  1. Slama M, Delgutte B. Neural coding of sound envelope in reverberant environments. J. Neurosci. 2015; 35: 4452-68. PDF

  2. Smith ZM, Oxenham AJ, Delgutte B.  Chimaeric sounds reveal dichotomies in auditory perception.  Nature 2002; 416:87-90.  PDF   Audio demonstration of auditory chimeras

Conference Proceeding

  1. Delgutte B, Hammond BM, Cariani PA.  Neural coding of the temporal envelope of speech: Relation to modulation transfer functions.  In Psychophysical and Physiological Advances in Hearing, AR Palmer, A Reese, AQ Summerfield, and R Meddis (eds).  London: Whurr, 1998: 595-603.  PDF

Thesis

  1. Slama M.  Neural coding of sound envelope in reverberant environments.  Doctoral Dissertation, Harvard-MIT Division of Health Sciences and Technology, 2011.  PDF

Top of page

Functional organization of the inferior colliculus

Journal Publication

  1. Seshagiri CV, Delgutte B.  Responses properties of neighboring neurons in auditory midbrain for pure tone stimulation: A tetrode study.  J. Neurophysiol. 2007; 98:2058-2073.  PDF

Thesis

  1. Seshagiri CV.  Response properties of neighboring neurons in the auditory midbrain.  Doctoral Dissertation, Harvard-MIT Division of Health Sciences and Technology, 2006.  PDF

Top of page

Mathematical models of auditory neurons

Journal Publications and Review

  1. Plourde E, Delgutte, B, Brown EN.  A point process model for auditory neurons considering both their intrinsic dynamics and the spectrotemporal properties of an external signal.  IEEE Trans. Biomed. Eng. 2011; 38:1507-10.  PDF
  2. Davis KA, Hancock KE, Delgutte B.  Computational models of inferior colliculus neurons. In Computational Models of the Auditory System, edited by R. Meddis, E. Lopez-Poveda, R.R. Fay and A. N. Popper.  Springer: New York 2010: 129-176.  PDF
  3. Kalluri S, Delgutte B.  Mathematical models of cochlear nucleus onset neurons.  I. Point neuron with many weak synaptic inputs.  J. Comput. Neurosci. 2003; 14:71-90.  PDF
  4. Kalluri S, Delgutte B.  Mathematical models of cochlear nucleus onset neurons.  II. Model with dynamic spike blocking state.  J. Comput. Neurosci. 2003; 14:91-110.  PDF

Conference Proceeding

  1. Kalluri S, Delgutte B.  Characteristics of cochlear nucleus onset units studied using a model.  In Computational Models of Auditory Function, SG Greenberg and ML Slaney (eds). Amsterdam: IOS Press, 2001; 29-44. PDF

Top of page

Neural coding of speech

Journal Publications and Review

  1. Delgutte B.  Auditory neural processing of speech.  In The Handbook of Phonetic Sciences, WJ Hardcastle and J Laver (eds).  Oxford: Blackwell, 1997; 507-538.  PDF

  2. Delgutte B, Kiang NYS.  Speech coding in the auditory nerve: I. Vowel-like sounds.  J. Acoust. Soc. Am. 1984; 75:866-878.  PDF

  3. Delgutte B.  Speech coding in the auditory nerve: II. Processing schemes for vowel-like sounds.  J. Acoust. Soc. Am. 1984; 75:879-886.  PDF

  4. Delgutte B, Kiang NYS.  Speech coding in the auditory nerve: III. Voiceless fricative consonants.  J. Acoust. Soc. Am. 1984; 75:887-896.  PDF

  5. Delgutte B, Kiang NYS.  Speech coding in the auditory nerve: IV. Sounds with consonant-like dynamic characteristics.  J. Acoust. Soc. Am. 1984; 75:897-907.  PDF

  6. Delgutte B, Kiang NYS.  Speech coding in the auditory-nerve: V. Vowels in background noise.  J. Acoust. Soc. Am. 1984; 75:908-918.  PDF

Conference Proceeding

  1. Hirahara T, Cariani PA, Delgutte B.  Representation of low-frequency formants in the auditory nerve. Proc. ESCA Workshop on the Auditory Basis of Speech Perception, Keele, UK, 1996; 83-86.  PDF

Top of page